Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            We have mapped HCN and HCO+ (J = 1 → 0) line emission toward a sample of seven star-forming regions (with 12+log[O/H] ranging from 8.34 to 8.69) in the outer Milky Way (Galactocentric distance >9.5 kpc), using the 14 m radio telescope of the Taeduk Radio Astronomy Observatory. We compare these two molecular lines with other conventional tracers of dense gas, millimeter-wave continuum emission from dust and extinction thresholds (A V ≥ 8 mag), inferred from the 13CO line data. HCN and HCO+ correlate better with the millimeter emission than with the extinction criterion. A significant amount of luminosity comes from regions below the extinction criterion and outside the millimeter clump for all the clouds. The average fraction of HCN luminosity from within the regions with A V ≥ 8 mag is 0.343 ± 0.225; for the regions of millimeter emission, it is 0.478 ± 0.149. Based on a comparison with column density maps from Herschel, HCN and HCO+ trace dense gas in high column density regions better than does 13CO. HCO+ is less concentrated than HCN for outer Galaxy targets, in contrast with the inner Galaxy sample, suggesting that metallicity may affect the interpretation of tracers of dense gas. The conversion factor between the dense gas mass (M dense) and line luminosities of HCN and HCO+, when integrated over the whole cloud, is comparable to factors used in extragalactic studies.more » « less
- 
            We report results of a project to map HCN and HCO+ J=1→0 emission toward a sample of molecular clouds in the inner Galaxy, all containing dense clumps that are actively engaged in star formation. We compare these two molecular line tracers with millimeter continuum emission and extinction, as inferred from 13CO, as tracers of dense gas in molecular clouds. The fraction of the line luminosity from each tracer that comes from the dense gas, as measured by AV>8 mag, varies substantially from cloud to cloud. In all cases, a substantial fraction (in most cases, the majority) of the total luminosity arises in gas below the AV>8 mag threshold and outside the region of strong millimeter continuum emission. Measurements of L(HCN) toward other galaxies will likely be dominated by such gas at lower surface densities. Substantial, even dominant, contributions to the total line luminosity can arise in gas with densities typical of the cloud as a whole (n ∼ 100 cm-3). Defining the dense clump from the HCN or HCO+ emission itself, similarly to previous studies, leads to a wide range of clump properties, with some being considerably larger and less dense than in previous studies. HCN and HCO+ have a similar ability to trace dense gas for the clouds in this sample. For the two clouds with low virial parameters, 13CO is definitely a worse tracer of the dense gas, but for the other four, it is equally good (or bad) at tracing dense gas.more » « less
- 
            ABSTRACT We present ALMA Band 7 polarization observations of the OMC-1 region of the Orion molecular cloud. We find that the polarization pattern observed in the region is likely to have been significantly altered by the radiation field of the >104 L⊙ high-mass protostar Orion Source I. In the protostar’s optically thick disc, polarization is likely to arise from dust self-scattering. In material to the south of Source I – previously identified as a region of ‘anomalous’ polarization emission – we observe a polarization geometry concentric around Source I. We demonstrate that Source I’s extreme luminosity may be sufficient to make the radiative precession time-scale shorter than the Larmor time-scale for moderately large grains ($$\gt 0.005\!-\!0.1\, \mu$$m), causing them to precess around the radiation anisotropy vector (k-RATs) rather than the magnetic field direction (B-RATs). This requires relatively unobscured emission from Source I, supporting the hypothesis that emission in this region arises from the cavity wall of the Source I outflow. This is one of the first times that evidence for k-RAT alignment has been found outside of a protostellar disc or AGB star envelope. Alternatively, the grains may remain aligned by B-RATs and trace gas infall on to the Main Ridge. Elsewhere, we largely find the magnetic field geometry to be radial around the BN/KL explosion centre, consistent with previous observations. However, in the Main Ridge, the magnetic field geometry appears to remain consistent with the larger-scale magnetic field, perhaps indicative of the ability of the dense Ridge to resist disruption by the BN/KL explosion.more » « less
- 
            Context. We started a multi-scale analysis of star formation in G202.3+2.5, an intertwined filamentary sub-region of the Monoceros OB1 molecular complex, in order to provide observational constraints on current theories and models that attempt to explain star formation globally. In the first paper (Paper I), we examined the distributions of dense cores and protostars and found enhanced star formation activity in the junction region of the filaments. Aims. In this second paper, we aim to unveil the connections between the core and filament evolutions, and between the filament dynamics and the global evolution of the cloud. Methods. We characterise the gas dynamics and energy balance in different parts of G202.3+2.5 using infrared observations from the Herschel and WISE telescopes and molecular tracers observed with the IRAM 30-m and TRAO 14-m telescopes. The velocity field of the cloud is examined and velocity-coherent structures are identified, characterised, and put in perspective with the cloud environment. Results. Two main velocity components are revealed, well separated in radial velocities in the north and merged around the location of intense N 2 H + emission in the centre of G202.3+2.5 where Paper I found the peak of star formation activity. We show that the relative position of the two components along the sightline, and the velocity gradient of the N 2 H + emission imply that the components have been undergoing collision for ~10 5 yr, although it remains unclear whether the gas moves mainly along or across the filament axes. The dense gas where N 2 H + is detected is interpreted as the compressed region between the two filaments, which corresponds to a high mass inflow rate of ~1 × 10 −3 M ⊙ yr −1 and possibly leads to a significant increase in its star formation efficiency. We identify a protostellar source in the junction region that possibly powers two crossed intermittent outflows. We show that the H II region around the nearby cluster NCG 2264 is still expanding and its role in the collision is examined. However, we cannot rule out the idea that the collision arises mostly from the global collapse of the cloud. Conclusions. The (sub-)filament-scale observables examined in this paper reveal a collision between G202.3+2.5 sub-structures and its probable role in feeding the cores in the junction region. To shed more light on this link between core and filament evolutions, one must characterise the cloud morphology, its fragmentation, and magnetic field, all at high resolution. We consider the role of the environment in this paper, but a larger-scale study of this region is now necessary to investigate the scenario of a global cloud collapse.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
